analytical solutions for the fractional fisher's equation
Authors
abstract
in this paper, we consider the inhomogeneous time-fractional nonlinear fisher equation with three known boundary conditions. we first apply a modified homotopy perturbation method for translating the proposed problem to a set of linear problems. then we use the separation variables method to solve obtained problems. in examples, we illustrate that by right choice of source term in the modified homotopy perturbation method, it is possible to get an exact solution.
similar resources
Analytical solutions for the fractional Fisher's equation
In this paper, we consider the inhomogeneous time-fractional nonlinear Fisher equation with three known boundary conditions. We first apply a modified Homotopy perturbation method for translating the proposed problem to a set of linear problems. Then we use the separation variables method to solve obtained problems. In examples, we illustrate that by right choice of source term in the modified...
full textAnalytical solutions for the fractional Klein-Gordon equation
In this paper, we solve a inhomogeneous fractional Klein-Gordon equation by the method of separating variables. We apply the method for three boundary conditions, contain Dirichlet, Neumann, and Robin boundary conditions, and solve some examples to illustrate the effectiveness of the method.
full textanalytical solutions for the fractional fisher's equation
in this paper, we consider the inhomogeneous time-fractional nonlinear fisher equation with three known boundary conditions. we first apply a modified homotopy perturbation method for translating the proposed problem to a set of linear problems. then we use the separation variables method to solve obtained problems. in examples, we illustrate that by right choice of source term in the modified...
full textanalytical solutions for the fractional klein-gordon equation
in this paper, we solve a inhomogeneous fractional klein-gordon equation by the method of separating variables. we apply the method for three boundary conditions, contain dirichlet, neumann, and robin boundary conditions, and solve some examples to illustrate the effectiveness of the method.
full textNumerical Solutions for Fractional Black-Scholes Option Pricing Equation
In this article we have applied a numerical finite difference method to solve the Black-Scholes European and American option pricing both presented by fractional differential equations in time and asset.
full textThe analytical solutions for Volterra integro-differential equations within Local fractional operators by Yang-Laplace transform
In this paper, we apply the local fractional Laplace transform method (or Yang-Laplace transform) on Volterra integro-differential equations of the second kind within the local fractional integral operators to obtain the analytical approximate solutions. The iteration procedure is based on local fractional derivative operators. This approach provides us with a convenient way to find a solution ...
full textMy Resources
Save resource for easier access later
Journal title:
sahand communications in mathematical analysisPublisher: university of maragheh
ISSN 2322-5807
volume 2
issue 1 2015
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023